A novel, noncanonical mechanism of cytoplasmic polyadenylation operates in Drosophila embryogenesis.
نویسندگان
چکیده
Cytoplasmic polyadenylation is a widespread mechanism to regulate mRNA translation that requires two sequences in the 3' untranslated region (UTR) of vertebrate substrates: the polyadenylation hexanucleotide, and the cytoplasmic polyadenylation element (CPE). Using a cell-free Drosophila system, we show that these signals are not relevant for Toll polyadenylation but, instead, a "polyadenylation region" (PR) is necessary. Competition experiments indicate that PR-mediated polyadenylation is required for viability and is mechanistically distinct from the CPE/hexanucleotide-mediated process. These data indicate that Toll mRNA is polyadenylated by a noncanonical mechanism, and suggest that a novel machinery functions for cytoplasmic polyadenylation during Drosophila embryogenesis.
منابع مشابه
PAP- and GLD-2-type poly(A) polymerases are required sequentially in cytoplasmic polyadenylation and oogenesis in Drosophila.
Cytoplasmic polyadenylation has an essential role in activating maternal mRNA translation during early development. In vertebrates, the reaction requires CPEB, an RNA-binding protein and the poly(A) polymerase GLD-2. GLD-2-type poly(A) polymerases form a family clearly distinguishable from canonical poly(A) polymerases (PAPs). In Drosophila, canonical PAP is involved in cytoplasmic polyadenylat...
متن کاملCytoplasmic polyadenylation of Toll mRNA is required for dorsal-ventral patterning in Drosophila embryogenesis.
Toll encodes a receptor that is critical for dorsal-ventral patterning in the early Drosophila embryo. Previous data have suggested that the accumulation of Toll protein in the embryo temporally correlates with elongation of the poly (A) tail of the message. Here, we demonstrate that Toll mRNA is translationally activated by regulated cytoplasmic polyadenylation. We also identify a 192 nucleoti...
متن کاملCytoplasmic polyadenylation is a major mRNA regulator during oogenesis and egg activation in Drosophila.
The GLD-2 class of poly(A) polymerases regulate the timing of translation of stored transcripts by elongating the poly(A) tails of target mRNAs in the cytoplasm. WISPY is a GLD-2 enzyme that acts in the Drosophila female germline and is required for the completion of the egg-to-embryo transition. Though a handful of WISPY target mRNAs have been identified during both oogenesis and early embryog...
متن کاملNoncanonical RNAs from transcripts of the Drosophila muscleblind gene.
It has become increasingly evident that eukaryotic cells produce RNA molecules from coding genes with constitutions other than those of typically spliced mRNA transcripts. Here we describe new cDNAs from the Drosophila melanogaster muscleblind (mbl) locus that identify two such atypical RNA molecules: RNAs containing an incomplete exon 2 tandem repetition (mblE2E2') or having exons with a diffe...
متن کاملMolecular Regulation of Alternative Polyadenylation (APA) within the Drosophila Nervous System
Alternative polyadenylation (APA) is a widespread gene regulatory mechanism that generates mRNAs with different 3'-ends, allowing them to interact with different sets of RNA regulators such as microRNAs and RNA-binding proteins. Recent studies have shown that during development, neural tissues produce mRNAs with particularly long 3'UTRs, suggesting that such extensions might be important for ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 24 2 شماره
صفحات -
تاریخ انتشار 2010